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The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck
collision operator to include quantum statistical effects, is discussed. The quantum extension can
serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in
which the quantum nature of electrons cannot be neglected. In this paper, the properties of the
Landau collision operator that have been useful in traditional plasma kinetic theory and plasma
transport theory are extended to the quantum case. We outline basic properties in connection with
the conservation laws, the H-theorem, and the global and local equilibrium distributions. We
discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual
two Rosenbluth potentials. We establish practical closed-form expressions for these potentials
under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals.
We study the properties of linearized quantum Landau operator, and extend two popular
approximations used in plasma physics to include collisions in kinetic simulations. We apply
the quantum Landau operator to the classic test-particle problem to illustrate the physical effects
embodied in the quantum extension. We present useful closed-form expressions for the
electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differen-
ces between the quantum and classical Landau collision operators are emphasized. VC 2016
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4944392]

I. INTRODUCTION

The work presented in this paper is part of an effort aimed
at developing practical approximations to enable kinetic simu-
lations of dense plasmas under non-equilibrium conditions.
This is motivated by recent experiments on warm dense mat-
ter and on charged-particle transport in plasmas formed along
the compression pathway to ignition in inertial confinement
fusion experiments. Indeed, by their nature, warm dense mat-
ter experiments produce transient, non-equilibrium conditions,
and measurements of equilibrium properties may be mislead-
ing if recorded while the plasma species are still out of equi-
librium.1 On the other hand, it is likely that current and future
X-ray diagnostics offer the possibility to probe the return to
equilibrium of the non-equilibrium states thus created, and
provide new information on the nature of interactions in warm
dense matter.2–4 Other recent experiments aimed at measuring
the stopping power of charged projectiles in inertial fusion
targets5 and warm dense matter,6,7 as well as alternative
particle-beam inertial fusion designs,8 can also benefit from
non-equilibrium kinetic simulations.

Unlike traditional plasmas, dense plasmas are dense
enough and cold enough that the wave-like and fermionic na-
ture of electrons can no longer be neglected. A major challenge
to performing non-equilibrium simulations of dense plasmas is
to include the quantum nature of conduction electrons in their
collisions among themselves and with ions. The state of the
art computational methods for modeling dense plasmas is
finite-temperature density-functional-theory-based molecular

dynamics and quantum Monte-Carlo,9 which, by construction,
represent well the electron-electron and electron-ion correla-
tions in thermal equilibrium. However, electrons are not dy-
namical in these approaches. As a consequence of the
fluctuation-dissipation theorem, it is possible to extract linear
transport coefficients like the electrical conductivities from
these simulations. However, transient dynamics, time-
dependent disturbances, and non-equilibrium dynamics beyond
the linear regime are not accessible using these methods. The
extension of these microscopic methods, e.g., time-dependent
density functional theory, to such dynamical conditions is still
in its infancy.9,10 Until now, the majority of non-equilibrium
calculations have been done using classical molecular dynam-
ics, in which quantum effects are included through modifica-
tions of the pair potentials used in the classical Newton’s
equations of motion.11,12 Another approach, which is the preva-
lent approach in traditional plasma physics, consists of describ-
ing electrons with a kinetic equation that describes the
evolution of the electron distribution function in phase-space.
While quantum kinetic theory is a mature field,13,14 detailed
quantum kinetic equations remain hard to solve both analyti-
cally and numerically. This is true not only of the Kadanoff-
Baym equations for the non-equilibrium Green’s functions but
also of less detailed descriptions like the quantum Boltzmann
equation first introduced by Uehling and Uhlenbeck to extend
the celebrated Boltzmann equation to the quantum realm.13,15

In fact, similar remarks can be made about the inclusion
of collisions in classical plasma physics. While fairly detailed
kinetic theories exist, e.g., the Lenard-Balescu kinetic equa-
tion, the simpler kinetic equation derived by Landau is gener-
ally preferred in applications.16,17 The Landau equation or,a)Electronic mail: daligaul@lanl.gov

1070-664X/2016/23(3)/032706/22/$30.00 VC 2016 AIP Publishing LLC23, 032706-1

PHYSICS OF PLASMAS 23, 032706 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  192.12.184.6 On: Tue, 22 Mar
2016 15:05:36

http://dx.doi.org/10.1063/1.4944392
http://dx.doi.org/10.1063/1.4944392
http://dx.doi.org/10.1063/1.4944392
mailto:daligaul@lanl.gov
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4944392&domain=pdf&date_stamp=2016-03-22


equivalently, the Fokker-Plank operator is, indeed, the starting
point or the underlying model of collisions of a large majority
of studies in many areas of plasma physics. There, the under-
lying plasmas are typically hot and dilute enough that the av-
erage particle kinetic energy greatly exceeds the potential
energy of interaction. In this weakly coupled regime, colli-
sions, i.e., the interactions of charged particles with the
electric and magnetic field fluctuations, cause only small
deflections of the velocity vector of plasma particles. The
effect of these deflections on the one-particle distribution
functions is well described by the Landau operator, which is
essentially a diffusion operator in velocity space. Curiously,
to our knowledge, the quantum extension of the Landau equa-
tion has not been considered as a suitable model of electron
collisions in dense plasmas. Under dense plasma conditions
such as created in high-energy-density experiments, ions are
weakly coupled at high enough temperature but become
strongly coupled for temperatures below which their mean ki-
netic energy is lower than their mean potential energy of
interaction; the description of ion collisions with the Landau
colllision operator is invalid under such strongly coupled con-
ditions. On the contrary, electrons remain weakly coupled
among themselves at all temperatures as a result of their fer-
mionic character (higher kinetic energy states are being popu-
lated as the temperature decreases). It is therefore legitimate
to explore the possibility to model electron-electron interac-
tions with a Landau-like collision operator that accounts for
the quantum nature of electrons. Like the classical Landau op-
erator, the quantum Landau collision operator can be obtained
by retaining in the Boltzmann-Uehling-Uhlenbeck collision
integral, only the small angle scattering events. To our knowl-
edge, it was first introduced in the literature in 1980 by
Danielewicz in the context of heavy-ion collision physics,
but, apart from a few appearances in the mathematically ori-
ented literature,18,19 it has not been utilized in physics. Like
its classical counterpart, this model of collisions is interesting
since it can be derived from controlled, physically motivated
approximations; it incorporates important physics, including
the effect of quantum degeneracy on the statistics of colli-
sions; and it is more easily amenable to numerical simulations
than other more detailed approximations. For these reasons,
the quantum Landau collision operator is a relevant, non-
trivial model of electron collisions in non-equilibrium dense
palsmas, which can serve as a reference to more advanced
descriptions, in a way similar to the Thomas-Fermi model
with respect to advanced density functional theory descrip-
tions for equation-of-state calculations.

Our primary objective is to extend to the quantum case
the properties of the Landau collision operator that have
been useful in traditional plasma kinetic theory and plasma
transport theory (see, e.g., Ref. 17). The extension is often
technically not straightforward, and we therefore give in the
appendixes the details of the mathematical derivations and
tricks used to this purpose. The resulting closed-form expres-
sions highlighted in the main text, however, are easy to use
in either analytical or numerical applications. In addition,
throughout the paper, we emphasize the similarities and dif-
ferences between the quantum and classical Landau collision
operator. More precisely, the paper is organized as follows.

In Sec. II, the quantum Landau collision operator is intro-
duced and its properties are studied. For completeness, we
first recall important properties in connection with the con-
servation laws, the H-theorem, and the global and local equi-
librium distributions. We then express the quantum Landau
operator in the form of a non-linear Fokker-Planck operator.
This requires introducing three Rosenbluth-like potentials,
instead of two Rosenbluth potentials for the classical opera-
tor. Practical, closed-form expressions of the potentials are
then given in the limit of local thermal equilibrium distribu-
tion functions. We then illustrate the physical implications of
the quantum corrections on the classic test-particle problem
in an equilibrium electron-ion plasma; practical expressions
are given for the friction and diffusion coefficients and for
the energy loss rate of the test-particle. Finally, we present
useful expressions for the electron-ion momentum and
energy transfer rates in plasmas consisting of quantum elec-
trons and classical ions. In Sec. III, we extend the previous
study to the linearized quantum Landau operator, linearized
around local thermal equilibrium. This is motivated by the
fact that linearized collision operators are central both in the
mathematical treatments of kinetic theories like in the
Chapman-Enskog method,20 and to some advanced numeri-
cal algorithms like the df-method.21 In this regard, we extend
to the quantum case two popular approximations of the line-
arized collision operator that are used in traditional plasma
kinetic simulations.

For convenience, the term quantum Landau-Fokker-
Planck collision operator is used throughout the paper and
abbreviated with the acronym qLFP to refer to the quantum
Landau collision operator or to its Fokker-Planck form.

II. QUANTUM LANDAU COLLISION OPERATOR

To the best of our knowledge, the qLFP collision operator
was first discussed by Danielewicz in Ref. 22 in the context of
heavy-ion collision physics. The operator was derived for gen-
eral mutual interactions from the grazing collision approxima-
tion of the Boltzmann-Uehling-Uhlenbeck kinetic equation.23

In the appendix of Ref. 22, the general collision operator was
specialized to Coulomb interactions. For completeness, in
Appendix A, we give a slightly different derivation starting
from the Boltzmann-Uehling-Uhlenbeck collision operator
with the dynamically screened Coulomb scattering cross sec-
tion in the Born approximation. By construction, the qLFP
collision operator inherits the assumptions at the basis of the
Boltzmann-Uehling-Uhlenbeck operator (e.g., regarding quan-
tum exchange, and diffraction), and we refer the reader to the
extensive literature on this equation for more details (in partic-
ular, we recommend Ref. 13).

A. Definition

We consider a plasma consisting of N species of non-
relativistic charged particles (including ions and electrons)
of mass ma, charge qa ¼ Zae (e is minus the electron charge).
Each species a is described by a single-particle phase-space
distribution function faðr; p; tÞ, normalized so that naðr; tÞ ¼Ð

dpfaðr; p; tÞ is the number density. For simplicity of exposi-
tion of the properties of the qLFP collision operator, which
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is the focus of this paper, we assume that collisions among
all species are described by a quantum Landau collision op-
erator. In applications to dense plasmas, the qLFP kinetic
equation could be restricted to conduction electrons, while
another description could be chosen to describe the ion dy-
namics, in particular, under conditions when ions are
strongly coupled. Several schemes can be envisioned in that
respect with different levels of sophistication. For instance, a
simple model would describe both charged species with
qLFP operators assuming classical ions and quantum elec-
trons, and would include the effect of strong Coulomb cou-
plings within the Coulomb logarithms, as is supported by the
recently developed effective potential theory of trans-
port.24–26 A more sophisticated approach would combine a
qLFP treatment of the electrons with classical molecular dy-
namics for the ions; the foundations of such a “kinetic theory
molecular dynamics” approach were recently discussed by
Graziani et al.27

Within the Landau approximation, the distribution func-
tions fa satisfy the kinetic equations

Dfa
Dt
¼
X

b

Cab fa; fbð Þ: (1)

Here

Dfa

Dt
¼ @fa

@t
þ pa

ma
% @fa
@r
þ Fa %

@fa
@pa

(2)

is the streaming operator describing the trajectories in phase-
space of species a particles under the influence of the force
Fa (e.g., the plasma mean electric field or an external disturb-
ance). Cabðfa; fbÞ denotes the qLFP operator of interest in this
paper, which describes the effect on fa of collisions between
particles of species a with particles of species b (like-species
scattering is described by the term with b¼ a). By dropping
dependencies on ðr; tÞ; Cab is given by

Cab fa; fb½ ' pað Þ ¼ cab @

@pa

%
ð

dpb V
$

ab pa; pbð Þ

(

(
@fa pað Þ
@pa

fb pbð Þ 1þ dbhbfb pbð Þ
# $

)
@fb pbð Þ
@pb

fa pað Þ 1þ dahafa pað Þ
# $

)
: (3)

Here,

cab ¼ 4pq2
aq2

blablnKab;

where lnKab is the Coulomb logarithm (see below), and

V
$

ab pa; pbð Þ ¼
1

2labvab
I
$
) vabvab

v2
ab

% &
;

where I
$

is the identity tensor, lab ¼ mamb=ðma þ mbÞ is the
reduced mass, and

vab ¼ va ) vb; va ¼
pa

ma
:

In Eq. (3), da ¼ )1; 0; 1 for Fermi-Dirac, Boltzmann, and
Bose-Einstein statistics, respectively. The expression (3)
includes the classical Landau equation as a special case by
setting da ¼ db ¼ 0. In the majority of applications in
plasma physics, the ions can be treated as classical particles
da ¼ 0 and the electrons are fermions da ¼ )1. However,
for sake of generality, the results presented below are
derived irrespective of the particles’ statistics. Finally,

ha ¼ ð2p"hÞ3
ga

, where ga is the spin multiplicity factor of species

a (ga¼ 2 for electrons), so that drdp=ha is the number of
available states in the phase volume drdp.

B. Discussion

1. Quantum degeneracy effect

The bracket terms ½1þ dahafa' and ½1þ dbhbfb' in Cab

account for the quantum statistics. For fermions (da ¼ )1),

the Pauli principle requires that no more than drdp
ha

particles of

species a in the volume dr can possess momenta in the range
dp. The probability of a collision that would result in a parti-
cle of species a entering this range is thus reduced in the
ratio ½1) hafa'.28 For bosons, on the contrary, the presence
of a like particle in the range dp increases the probability
that a particle will enter that range in the ratio ½1þ hafa'.

2. Coulomb logarithms

The Coulomb logarithm refers to the integral over mo-
mentum transfers "hk

lnKab ¼
ð1

0

dk

k
(4)

that arises in the process of retaining only the small-angle
scattering events in the Boltzmann collision operator with
the Coulomb scattering law, or, as in Appendix A,

lnKab ¼
ð1

0

dk

k

1

! k; 0ð Þ

''''

''''
2

; (5)

when using the screened Coulomb scattering cross section in
the Born approximation (here ! is the total dielectric function
in the random phase approximation29). The integral (4) is
divergent at both ends of the integration range: at large mo-
mentum transfer "hk, because of the grazing collisions approxi-
mation, and at small k because of the infinite range of the bare
Coulomb potential (the divergence is regularized by the
dielectric function in Eq. (5)). In practice, physically moti-
vated cutoff parameters kmin and kmax are introduced to regula-

rize the otherwise divergent integral, leading lnK ¼ ln kmax
kmin

( )
.

We refer to Refs. 30 and 31 for detailed discussions on the
choice of cutoffs for dense plasmas, and to Appendix A of
Ref. 32 for additional choices. For completeness, we recall
here the most popular prescription for typical dense electron-
ion plasmas. The logarithm is expressed in the form30
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lnK ¼ 1

2
ln 1þ k2

max

k2
min

 !

;

with upper and lower cutoffs given as follows. The minimum
kmin is set by Coulomb screening.33 For Kei

kmin ¼ minðksc; 1=aÞ;

where ai ¼ ð3=4pniÞ1=3 is the interionic distance and the ksc

is the inverse screening length

k2
sc ¼ k2

D;i þ k2
e ;

where kD;i is the ionic Debye length

k2
D;i ¼

4pniq2
i

kBTi
;

and ke is the Thomas-Fermi screening length

k2
e ¼ k2

D;e

Q)1
2

beleð Þ
Q1

2
beleð Þ

*
k2

D;e

1þ T2
F=T2

e

* +1
2

;

in terms of the Fermi-Dirac integral defined below. For Kee,
kmin ¼ ke. The upper limit kmax is, under typical dense
plasma conditions, set by the characteristic inverse electron
deBroglie wavelength of electrons, which is conveniently
approximated across degeneracy regimes by

k2
max ¼

24p

k2
th

1þ T2
F

T2
e

 !1
2

;

with kth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p"h2=mekBTe

q
the thermal deBroglie wavelength.

3. Non-linearity

The quantum operator has a higher-order nonlinearity
than its classical counterpart, since the dependence on the
distribution functions is cubic in the quantum case and
quadratic in the classical case. This leads to extra difficul-
ties to deal with in both the analytical and numerical
treatments.

C. Properties

Like its classical counterpart,17 the qLFP collision oper-
ator satisfies physically important properties in connection
with the conservation laws and with the concept of irreversi-
bility. These properties can be readily derived assuming that
the distribution functions vanish sufficiently fast as jpj ! 1
to eliminate surface integrals. Although these properties
have already been discussed in Ref. 22, we recall them here
without proof for the sake of completeness.

1. Local conservation laws

At each space-time point ðr; tÞ, the total number of par-

ticles of any species na ¼
Ð

dpfa, the total momentum

P ¼
P

a

Ð
dp pfa, and the total (kinetic) energy E ¼

P
a

Ð
dp p2

2ma
fa are conserved by collisions. More precisely,

ð
dp Cab½fa; fb'ðpÞ ¼ 0;

ð
dp p Cab½fa; fb'ðpÞ ¼ )

ð
dp p Cba½fb; fa'ðpÞ;

ð
dp

p2

2ma
Cab fa; fb½ ' pð Þ ¼ )

ð
dp

p2

2mb
Cba fb; fa½ ' pð Þ;

i.e., the local density is not affected by collisions, the mo-
mentum transfer rate from species b to species a is equal in
magnitude and opposite in direction to that from a to b, and
the energy is conserved in a binary collisions between spe-
cies a and b.

2. H-theorem

Consider the total entropy density s and flux js defined
as

sðr; tÞ ¼ )kB

X

a

ð
dp

ha

"faln"fa ) da 1þ da
"fa

* +
ln 1þ da

"fa
* +# $

jsðr; tÞ¼)kB

X

a

ð
dp

ha

p

ma

"faln"fa)da 1þda
"fa

* +
ln 1þda

"fa

* +# $
;

with "fa ¼ hafa. The qLFP kinetic equation implies

@s

@t
þ @

@r
% js + 0;

which expresses the local H-theorem. In particular, the total
entropy SðtÞ ¼

Ð
drsðr; tÞ satisfies dS

dt + 0 and is a monotoni-
cally increasing function of time, whatever the initial
conditions.

3. Global equilibrium

As a consequence, whatever the initial conditions, the
time evolution reaches a final, time-independent state, a.k.a.
stationary state, when S(t) reaches its maximum character-
ized by dS

dt ¼ 0. The only stationary states are the Fermi-
Dirac (da ¼ )1) or Bose-Einstein (da ¼ 1) distribution
functions

fa r; pð Þ ¼
1

ha

1

e)b½la) 1
2ma
ðp)mauÞ2' ) da

; 8a;

where the inverse temperature b ¼ 1=kBT, the chemical
potential la, and the flow velocity u are constant independent
of ðr; tÞ and are the same for all species.

4. Local thermal equilibrium

The effect of collisions vanishes only when all species
are in a local Fermi-Dirac or Bose-Einstein state at the same
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local inverse temperature bðr; tÞ and flow velocity uðr; tÞ.
More precisely,

Cab½fa; fb' ¼ 0 8a; b

if and only if, 8a,

fa r; p; tð Þ ¼
1

ha

1

e)b r;tð Þ la r;tð Þ) 1
2ma

p)mau r;tð Þð Þ2½ ' ) da

: (6)

We recall for later reference that the classical limit of the
local thermal equilibrium is given by bla ! )1, which
yields the familiar Maxwell-Boltzmann distribution

fa r; p; tð Þ , na r; tð Þ
b

2pma

- .3=2

( e)
b

2ma
pa)mau r;tð Þ½ '2 for bla ! )1;

with the local number density na ¼ 1
ha

2pma
b

( )3
2
ebla .

D. Fokker-Planck-like form of the quantum
Landau-Fokker-Planck operator

The qLFP collision integral (3) can be written in the
form of a non-linear Fokker-Planck collision operator34

Cab fa; fb½ ' ¼ )
@

@pa

%

"

Aabfa 1þ dahafað Þ þ Babfa

) 1

2

@

@pa

% D
$

abfa

( )#

; (7)

¼) @

@pa

% Aabfa 1þ dahafað Þ) 1

2
D
$

ab %
@

@pa

fa

% &
; (8)

where we introduced the “dynamical friction” vectors

Aab pað Þ ¼ )cab

ð
dpb

@

@pb

% V
$

ab pa; pbð Þ
% &

fb pbð Þ;

Bab pað Þ ¼ )
mb

ma
cab (

ð
dpb

@

@pb
% V
$

ab pa; pbð Þ
% &

( fb pbð Þ 1þ dbhbfb pbð Þ
# $

;

and the diffusion tensor

D
$

abðpaÞ ¼ 2cab

ð
dpbV

$

abðpa; pbÞfbðpbÞ½1þ dbhbfbðpbÞ':

For simplicity, we dropped the explicit dependences on ðr; tÞ
in the previous expressions. In deriving Eq. (8), we used the

relation BabðpaÞ ¼ 1
2
@
@pa
% D
$

abðpaÞ.
As with the classical operator,35 the coefficients

Aab;Bab, and D
$

ab can be written as

Aab pað Þ ¼
cab

mblab

@Hb vað Þ
@va

; (9a)

Bab pað Þ ¼
cab

malab

@Ib vað Þ
@va

; (9b)

D
$

ab pað Þ ¼
cab

lab

@2Gb vað Þ
@va@va

; (9c)

in terms of the three “potentials”

Hb vð Þ ¼
ð

dvb

~fb vbð Þ
jv) vbj

;

Ib vð Þ ¼
ð

dvb

~fb vbð Þ 1þ db
~hb

~fb vbð Þ
h i

jv) vbj
;

Gb vð Þ ¼
ð

dvbjv) vbj~fb vbð Þ 1þ db
~hb

~fb vbð Þ
h i

;

(10)

with ~hb - hb=m3
b and ~fðvbÞ ¼ m3

bf ðmbvbÞ. The three poten-
tials Hb, Ib, and Gb are solution of Poisson’s equations

r2HbðvÞ ¼ )4p~fbðvÞ;
r2IbðvÞ ¼ )4p~fbðvÞ½1þ db

~hb
~fbðvÞ';

r2GbðvÞ ¼ 2IbðvÞ;

where r ¼ @
@v.

In the case db ¼ 0; BabðpaÞ ¼ mb
ma

AabðpaÞ, and Eq. (7)
corresponds to the usual Landau-Fokker-Planck collision op-
erator with friction 1þ mb

ma

* +
Aab. In this case, Ib¼Hb, and Hb

and Gb reduce to the two usual Rosenbluth potentials.35

E. Potentials in local thermal equilibrium

We provide closed-form expressions for the potential
Hb, Ib, and Gb when ~fb is a local equilibrium distribution
function (6), i.e., (dropping the subscript b)

~f r; v; tð Þ ¼
1
~h

1

e)b r;tð Þ l r;tð Þ)m v)u r;tð Þð Þ2=2½ ' ) d
:

These expressions are useful in a number of applications, includ-
ing the test-particle problem and linear transport problem.

We recall that, in the classical case, the equilibrium
Rosenbluth potentials satisfy17,35

H vð Þ ¼ I vð Þ ¼ n

erf

ffiffiffiffiffiffiffi
bm

2

r
w

 !

w
; (11a)

G vð Þ ¼ n wþ 1

mbw

- .
erf

ffiffiffiffiffiffiffi
bm

2

r
w

 !

þ

ffiffiffiffiffiffiffiffiffi
2

pmb

s

e)
bm
2 w2

2

4

3

5;

(11b)

where w ¼ jv) uj. The extension of these expressions to the
quantum case is not completely trivial, and we report the
lengthy details in Appendix C. The results can be conven-
iently expressed in terms of the usual Fermi-Dirac (d ¼ )1)
and Bose-Einstein (d¼ 1) integrals of order " and argument t
defined as

Q" tð Þ ¼ 1

C " þ 1ð Þ

ð1

0

dy
y"

ey)t ) d
;
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where CðtÞ ¼
Ð1

0 xt)1e)xdx is the Gamma function, along
with the lower incomplete integral defined as

Q" t; xð Þ ¼
1

C " þ 1ð Þ

ðx

0

dy
y"

ey)t ) d
;

and the upper incomplete integral

Qc
"ðt; xÞ ¼ Q"ðtÞ )Q"ðt; xÞ:

We find

H vð Þ ¼
4pm2

bh

ffiffiffi
p
p

2
ffiffiffi
x
p Q1=2 t; xð Þ þQc

0 t; xð Þ

" #

; (12a)

I vð Þ ¼
2m2p3=2

bh
ffiffiffi
x
p Q)1

2
t; xð Þ; (12b)

G vð Þ ¼
4p3=2m

ffiffiffi
x
p

b2h
Q)1

2
t; xð Þ þ

2p3=2m

b2h

1ffiffiffi
x
p Q1

2
t; xð Þ

þ 8pm

b2h
ln 1þ e t)xð Þ
* +

; (12c)

where t ¼ bl and x ¼ bmw2

2 . In the classical limit bl! )1,
the previous expressions reduce to the classical Rosenbluth
potentials (11). This can be shown using

Q1
2

t; xð Þ , eterf
ffiffiffi
x
p* +
) 2

ffiffiffi
x
p
ffiffiffi
p
p et)x

Q)1
2

t; xð Þ , eterf
ffiffiffi
x
p* +

Qc
0ðt; xÞ , et)x

for t! )1. In practice, the potentials can be numerically
evaluated using accurate series representations of the inte-
grals Q" , e.g., Ref. 36.

F. Scattering of a test-particle

In order to illustrate the effect of the quantum statistics
on the Landau collision operator, we apply the previous
results to the classic test-particle problem. We consider a clas-
sical test-particle in an otherwise homogenous electron-ion
plasma at thermal equilibrium at temperature T. Electrons (e)
are treated as quantum mechanical particles (with ga¼ 2 and
da ¼ )1 for spin 1/2 particles) and ions (i) are treated as clas-
sical particles. This composition will lead us to use and com-
pare both the quantum and classical expressions (12) and (11)
of Sec. II E. In the following, ni and ne denote the particle den-
sities, bi ¼ be ¼ 1=kBT the inverse temperatures (the expres-
sions given below apply to be 6¼ bi), and h ¼ ð2p"hÞ3=2; the
other notations can be found in Sec. II. The test-particle
constitutes a third particle species and is labeled by the letter
t. We assume that the distribution function ft of non-
interacting test-particles is homogenous, so that the spatial
gradient and mean-field force in the streaming operator (2)
disappear, i.e., D

Dt ¼
@
@t. Under these conditions, the kinetic

equation (1) satisfied by ft becomes the linear Fokker-Planck
equation

@ft

@t
¼ ) @

@p
% At pð Þft pð Þ )

1

2

@

@p
% D

$

t pð Þft pð Þ
( )% &

;

where the dynamical friction and diffusion tensor are inde-
pendent of ft, and are given by the sum of the contributions
due to collisions with electrons and ions

At pð Þ ¼ Ate pð Þ 1þ me

mt

- .
þ Ati pð Þ 1þ mi

mt

- .

- )"t vð Þp ;

D
$

t pð Þ ¼ D
$

te pð Þ þ D
$

ti pð Þ

- m2
t dt
k vð Þ I

$
) pp

p2

- .
þ m2

t dt
? vð Þ

pp

p2
:

These contributions are calculated by applying Eq. (9) to the
quantum and classical potentials (12) and (11), respectively.
We obtain the friction coefficient "t ¼ "te þ "ti with

"te vð Þ ¼
1

4p
3
2"h3

m3
ec

te

m2
t lte

1þ mt

me

- .Q1
2

bele; x
2
e

* +

x3
e

;

"ti vð Þ ¼
cti

m2
t lti

1þ mt

mi

- .
ni

v3
erf xið Þ )

2xiffiffiffi
p
p e)x2

i

% &
;

the parallel diffusion coefficient dt
k ¼ dte

k þ dti
k with

dte
k vð Þ ¼

2

mt þ með Þbe
"te vð Þ; (13a)

dti
k vð Þ ¼

2

mt þ mið Þbi
"ti vð Þ; (13b)

and the perpendicular diffusion coefficient dt
? ¼ dte

? þ dti
? with

dte
? vð Þ ¼

1

2p
3
2"h3be

m2
ec

te

m2
t lte

( 1

xe
Q)1

2
bele; x

2
e

* +
) 1

2x2
e

Q1
2

bele; x
2
e

* +% &
;

dti
? vð Þ ¼

cti

m2
t lti

ni

v
1) 1

2x2
i

- .
erf xið Þ þ

1ffiffiffi
p
p

xi
e)x2

i

% &
;

where we defined

xa ¼
bama

2

- .1=2

v and v ¼ jpj
mt
:

For the illustration, we have evaluated these coefficients
over a wide range of physical conditions for a proton
immersed in fully ionized hydrogen (electron-proton)

plasma. In the following, vi ¼
ffiffiffiffiffiffiffi
2kBT

mi

q
(ve) is the ion (electron)

thermal velocity, vF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EF=me

p
, EF ¼ "h2

2me
ð3p2neÞ2=3

denote the electron Fermi velocity and Fermi energy, H ¼
kBT
EF

is the degeneracy parameter, which measures the degree

of quantum degeneracy of electrons, xpe ¼
ffiffiffiffiffiffiffiffiffiffi
4pe2ne

me

q
is the

electron plasma frequency, and ae ¼ 3
4pne

( )1=3
is the average

distance between electrons.
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In order to help the reader interpret physically the
results, we briefly recall how the friction and diffusion coef-
ficients are related to important processes17 before discussing
the numerical results. Under the influence of collisions with
the background electrons and ions, the test-particle distribu-
tion ft spreads out in momentum space, and ultimately
becomes isotropic and Maxwellian as it reached thermal
equilibrium with the electron-ion plasma. The particle’s mo-
mentum pðtÞ undergoes a random walk like motion, which
consists of a systematic friction force )"tpðtÞ together with
a random force that randomizes the direction of the momen-
tum in directions perpendicular and parallel to the instanta-
neous momentum according to

d

dt
h Dp?ð Þ2i ¼ 2m2

t dt
?;

d

dt
h Dpk
* +2i ¼ m2

t dt
k;

where hðDp?Þ2i and hðDpkÞ2i measure the spread of the dis-
tribution function along both directions. Finally, the rate of
change of the expectation value of the test-particle’s kinetic
energy W ¼ 1

2mt
p2

t is related to

dW

dt
¼ )"E W;

with the energy-loss rate

"E vð Þ ¼ 2"t vð Þ )
2

v2
dt
? vð Þ þ

1

2
dt
k vð Þ

- .
;

with v ¼ jpj=mt.
Figures 1–3 show dimensionless results for the slowing

down rate "tðvÞ=xpe, the diffusion coefficient dt
?ðvÞ=

ða2
ex

3
peÞ, and the energy loss rate "EðvÞ=xpe over a wide

range of conditions spanning from the classical regime
(H¼ 50) to the quantum degenerate regime (H ¼ 0:01), and
for a wide range of test-particle velocities v spanning form
the very slow v. vi to the very fast v/ maxðve; vFÞ

velocity regimes. The results shown were obtained setting
the Coulomb logarithms to unity, lnkte ¼ lnKti ¼ 1, to high-
light the effect of quantum statistics on the momentum inte-
gral in the Landau collision operator. The parallel diffusion
coefficient is not shown since it is simply related to "tðvÞ
according to Eq. (13). The arrows in Figs. 1–3 mark the loca-
tion of velocities vi, ve, and vF. The figures also show the sep-
arate contributions of electrons and ions on the coefficients.

The following general qualitative observations can be
made regarding the effect of quantum degeneracy.

1. Friction mt ðvÞ

For all conditions, the slowing down rate is dominated by
the ion contzribution at small enough velocity v < v? and by
the electron contribution at large enough velocity v > v?,
where v?=vi (located by an arrow in Fig. 1) increases with
decreasing H. While the ion thermal velocity remains for all
H a good reference velocity that marks a net change in the
collisionality with ions (see below), the reference velocity for
electrons is vref ¼ maxðve; vFÞ. The latter varies from the ther-
mal velocity ve to the Fermi velocity vF as H enters quantum
degenerate regime H < 1. For energetic test-particles with
v > v?, the collision with electrons become much less effec-
tive when v > vref . Note that in the limit of full degeneracy
H! 0; "teðvÞ consists of two pieces, namely,

"te vð Þ ¼
1

3p2"h3

ctem3
e

m2
t lte

1þ mt

me

- .
(

v3
F

v3
; v > vF

1; v < vF;

8
<

:

as can be seen in Fig. 1 for H ¼ 0:01 and 0.1. Finally, in
order to see more easily the quantitative effect of the electron
quantum degeneracy on the slowing-down rate, Fig. 4 (top
panel) shows the ratio "tðvÞ="class

t ðvÞ of the results shown in
Fig. 1 to the values obtained assuming classical.

FIG. 1. Slowing-down rate "tðvÞ=xpe

(black dotted line) of a test-particle
(Zt¼ 1) of electron-ion plasmas with
ion charge Zi¼ 1, density rs¼ 1, and
electron degeneracy h ¼ 50; 1; 0:1, and
0.01, as a function of the test-particle
velocity v in units of the ion thermal
velocity vi. The arrows indicate the
location of the ion thermal velocity vi,
the electron Fermi velocity vF, the
electron thermal velocity ve, and the
transition around v? from the low ve-
locity regime dominated by collisions
with ions and the high velocity regime
dominated by electron collisions. The
full green line shows the contribution
"teðvÞ of the electrons, the full orange
line shows the contribution "tiðvÞ of
the ions, while the dashed lines show
the small and large test-particle veloc-
ity limits discussed in the text.
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2. Diffusion d?ðvÞ

The most striking effect is the strong reduction of the
electron contribution to the diffusion coefficient in the
quantum degenerate regime at high velocities. While
in the classical regime electrons and ions equally contrib-
ute to the perpendicular diffusion, the contribution
of electrons decreases significantly when H 0 1. In the
fully degenerate limit H! 0; dte

?ðvÞ ¼ 0. To see more
easily, the quantitative effect of the electron quantum
degeneracy on the diffusion coefficient, Fig. 4 (bottom
panel) shows the ratio dt

?ðvÞ=dt;class
? ðvÞ of the results

shown in Fig. 2 to the values obtained assuming classical
electrons.

3. Energy relaxation rate mE ðvÞ

The energy loss rate, which is closely related to the stop-
ping power of the electron-ion plasma, shows transitions
similar to those discussed above for "tðvÞ.

For practical purposes,37 we now give explicit formulas
for the three main velocity regimes readily distinguishable in
Figures 1–3. These formulas give very accurate results in
their range of validity; this can be seen in Figs. 1 and 2,
which represent them in the low and high velocity regimes
(dashes lines). Moreover, these formulas can be readily eval-

uated using the relation ne ¼ 2
ð2p"hÞ3

2pme
be

( )3
2Q1

2
ðbeleÞ between

the particle density and bele, together with the simple

FIG. 2. Diffusion coefficient dt
?ðvÞ=

ða2
ex

3
peÞ of a test-particle. The condi-

tions, notations, and legends are the
same as in Fig. 1.

FIG. 3. Energy loss rate j"EðvÞj=xpe

rate (black full line) of a test-particle.
The conditions are the same as in
Fig. 1. The energy loss "EðvÞ is posi-
tive at the right of the dip region, is
zero at the minimum occurring at
v!vi, and is negative to its left (at
small enough velocity, the test-particle
absorbs energy from the plasma). The
orange and green dotted lines show the
contribution of the ions and electrons,
respectively. The arrows indicate the
location of the ion thermal velocity ve,
the electron Fermi velocity vF and the
electron thermal velocity ve.
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approximate inversion formula of the Fermi integral, which
can be found in Ref. 38

bele ¼ )
3

2
lnHþ ln

4

3
ffiffiffi
p
p þ AH) 1þbð Þ þ BH) 1þbð Þ=2

1þ AH)b ;

with A¼ 0.25954, B¼ 0.0072, and b¼ 0.858, where H ¼
1=ðbeEFÞ is the degeneracy parameter with EF ¼ "h2

2me

ð3p2neÞ2=3.
Using the notation

Ct ¼
4pZ2

t e4

m2
t

;

we have

(a) For v. vi;maxðve; vFÞ, the slowing-down rate and
the diffusion coefficients are independent of
velocity

"t vð Þ ¼
4

3
ffiffiffi
p
p neCt (

m3
e

4p
3
2"h3ne

lnKte

1þ e)bele
1þ mt

me

- ."

þ ZilnKti

v3
i

1þ mt

mi

- .#

;

dt
k vð Þ ¼

4

3
ffiffiffi
p
p Ctne

m3
ev

2
e

4p
3
2"h3ne

lnKte

1þ e)bele
þ ZilnKti

vi

" #

;

dt
?ðvÞ ¼ dt

kðvÞ:

Thus, the test-particle motion is the same as a usual
Brownian motion.

(b) For vi . v. maxðve; vFÞ, the electron collisions have
the same effect as in previous range, but the collisions
with ions have a much different effect

"t vð Þ ¼ neCt (
m3

e

3p2"h3ne

lnKte

1þ e)bele
1þ mt

me

- ."

þ ZilnKti

v3
1þ mt

mi

- .#

;

dt
k vð Þ ¼ Ctne

m3
ev

2
e

3p2"h3ne

lnKte

1þ e)bele
þ ZilnKtiv2

i

v3

" #

;

dt
? vð Þ ¼ Ctne

m3
ev

2
e

3p2"h3ne

lnKte

1þ e)bele
þ ZilnKti

v

" #

:

Diffusion due to ion collisions is primarily perpendicu-
lar to the test-particle velocity.

(c) For an energetic test-particle with vi;maxðve; vFÞ . v,
diffusion is mainly perpendicular to the velocity of the
test-particle, with electrons and ions making roughly
equal contributions:

"t vð Þ ¼
neCt

v3
1þ mt

me

- .
lnKte þ Zi 1þ mt

mi

- .
lnKti

" #
;

dt
k vð Þ ¼

Ctne

v3
v2

e lnKte þ Ziv2
i lnKti

# $
;

dt
? vð Þ ¼

Ctne

v
lnKte þ ZilnKti½ ':

If the test-particle is an ion, the slowing-down rate is
due mainly to collisions with electrons; for an electron
test-particle, the electron and ion collisional contribu-
tions are roughly equal.

G. Electron-ion collisional transfer rates

Whereas electrons may, in principle, have any degree of
degeneracy, the ions behave classically under most of the
plasma conditions feasible in the laboratory. Accordingly, in
this section, we consider the electron-ion collision operators

Cei fe; fi½ ' pð Þ ¼ cei @

@p
%
ð

dp0 V
$

ei p; p0
* +

(
@fe pð Þ
@p

fi p0
* +
) @fi p0ð Þ

@p0
fe pð Þ 1) hfe pð Þ

# $
/ 0

Cie fi; fe½ ' pð Þ ¼ cei @

@p
%
ð

dp0 V
$

ie p; p0
* +

(
@fi pð Þ
@p

fe p0
* +

1) hfe p0
* +# $

) @fe p0ð Þ
@p0

fi pð Þ
/ 0

FIG. 4. Ratio of the quantum to classical slowing-down rate (top panel) and
perpendicular diffusion coefficient (bottom panel) for a test-particle in an
electron-ion plasma with ion charge Zi¼ 1, density rs¼ 1 and electron
degeneracy H¼ 50 (red line), 1 (green line), 0.1 (blue line), and 0.01 (black
line). The colored arrows indicate the location of the Fermi velocity for each
value of the degeneracy parameter.

032706-9 J!erôme Daligault Phys. Plasmas 23, 032706 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  192.12.184.6 On: Tue, 22 Mar
2016 15:05:36



assuming ions are classical (i.e., ð1þ dihifiÞ , 1). Instead of
focussing again on the properties of these operators as before,
here we discuss and provide useful closed-form expressions
for the resulting electron-ion momentum and energy transfer
rates, which measure the rate at which the electron and ion
subsystems exchange momentum and energy. The derivation
of closed-form expressions is fairly involved, the details of
which are given in Appendix D.

1. Electron-ion collisional momentum transfer rate

Dropping the dependence on ðr; tÞ, the electron-ion mo-
mentum transfer rate, or friction force, is

Fei½fe; fi' ¼
ð

dp p CeiðpÞ

¼ )
ð

dp p CieðpÞ ¼ )Fie½fi; fe':

That is, the collisional momentum transfer from ions to elec-
trons is equal in magnitude and opposite in direction to that
from electrons to ions, in agreement with Newton’s third
law. More explicitly,

Fei fe; fi½ ' ¼
ð

dp Aei pð Þfe pð Þ 1þ mi

me

- .
) hefe pð Þ

% &
;

with he ¼ ð2p"hÞ3=2. The expression can be evaluated in a
closed-form assuming that the ionic distribution function is a
local Maxwell-Boltzmann distribution with density niðr; tÞ,
mean velocity uiðr; tÞ, and temperature kBTiðr; tÞ ¼ 1=biðr; tÞ

fi r; p; tð Þ ¼ ni
bi

2pmi

- .3
2

e)
bi

2mi
p)miuið Þ2 ;

and that the electronic distribution function is a local Fermi-
Dirac distribution with chemical potential leðr; tÞ, mean ve-
locity ueðr; tÞ, and temperature kBTeðr; tÞ ¼ 1=beðr; tÞ

fe r; p; tð Þ ¼
1

he

1

e)be r;tð Þ le r;tð Þ) 1
2me

p)meue r;tð Þð Þ2½ ' þ 1
:

The resulting expression for Fei is complicated (see
Appendix D), but can be greatly simplified in the limit where
jui ) uej. vi, where vi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=mibi

p
is the ion thermal

speed.39 After a lengthy calculation described in Appendix
D, we find to first order in ui ) ue

Fei fe; fi½ ' ¼ )mene
ue ) ui

sF
ei

;

where the momentum-transfer time is defined by

1

sF
ei

¼ 8
ffiffiffi
p
p

3

mecei

lei

ni

ne

bi

be

( 1

he

ð1

0

dy
e)y2

1þ e)bele e
mebe
mibi

y2
2

be

bi
) 1

- .
y2þ 1

% &
: (14)

In the classical limit bele ! )1, the expression (14)
reduces to the usual result17,40

1

sF
ei

, 4

3
ffiffiffi
p
p cei

m2
elei

ni

v2
e þ v2

i

* +3=2
1þ me

mi

- .
; (15)

with ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=mebe

p
. In many physical situations, mebe

mibi
. 1,

and Eq. (14) is then well approximated by

1

sF
ei

, 1

sei
- 4p

3

ni

ne

cei

he

1

1þ e)bele
for

mebe

mibi
. 1: (16)

Figure 5 shows the relaxation time sei as a function of the
degeneracy parameter H.

2. Electron-ion collisional energy transfer rate

The electron-ion collisional energy exchange rate is

Qei fe; fi½ ' ¼
ð

dp
p) meueð Þ2

2me
Cei pð Þ

¼ 1

me

ð
dp

(

p) meueð Þ % Aei pð Þfe pð Þ

( 1þ mi

me

- .
) hfe pð Þ

% &
þ 1

2
TrD

$

ei pð Þfe pð Þ

)

:

It is related to the ion-electron rate such as

Qei þ Qie ¼ ðui ) ueÞ % Fei;

which expresses the conservation of energy in collisions
between electrons and ions. With the local distribution
functions considered in Sec. II G 1, we find, assuming
jjui ) uejj=vi . 1,

Qei fe; fi½ ' ¼ 3kBne 1þ mi

me

- .)1 Ti ) Te

sQ
ei

¼ )Qie fi; fe½ ';

where the energy relaxation time is

1

sQ
ei

¼ 16
ffiffiffi
p
p

3

mecei

lei

ni

ne
1þ me

mi

- .

( 1

he

ð1

0

dy
y2e)y2

1þ e)bele e
mebe
mibi

y2
: (17)

FIG. 5. Inverse relaxation rate xpe=sei, Eq. (16), and its classical limit (15)
as a function of the degeneracy parameter H in an hydrogen plasma with
ne ¼ 1:28( 1025 cm)3.
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In the classical limit bele ! )1, the expression (17)
reduces to the usual result17

1

sQ
ei

, 4

3
ffiffiffi
p
p cei

m2
elei

ni

v2
e þ v2

i

* +3=2
1þ me

mi

- .
:

In the limit mebe
mibi
. 1, Eq. (17) is well approximated by

1

sQ
ei

, 1

sei
;

where sei is defined as in Eq. (16). This result corresponds to
the popular result of Brysk et al.30 that was obtained by
extending the usual binary Coulomb collision calculation of
Spitzer40 to include the Pauli principle. Further discussion on
sei in dense plasmas can be found in Ref. 41.

III. LINEARIZED QUANTUM LANDAU COLLISION
OPERATOR: ELECTRON-ELECTRON COLLISIONS

The non-linearity of a collision operator is essential if the
state of the system is far from local thermal equilibrium.
However, in the important situations where the phase-space
distribution f remains near local thermal equilibrium f0, the
linearized form of the collision operator provides an accurate
description of the dynamics of the deviation df ¼ f ) f0,
while the dynamics of f0 is governed the hydrodynamic equa-
tions through its dependence on the thermodynamic variables.
More generally, linearized collision operators play an impor-
tant role in the mathematical analysis of kinetic equations
based on perturbation expansions, such as in the celebrated
Chapman-Enskog method. Moreover, linearized collision
operators are at the basis of advanced numerical algorithms to
include the effect of collisions in kinetic simulations (e.g., the
df-method in traditional plasma physics21,42,43). The extension
of such algorithms to the qLFP operator could be used in the
applications to dense plasmas briefly mentioned in Sec. II. In
this section, we discuss the properties of the operator obtained
by linearizing the qLFP operator around local equilibrium.
First we describe general properties in connection with the
conservation laws, the stationary states, and the self-
adjointness and positivity of the linerarized operator. From
these properties, the well-known Chapman-Enskog solution
of the classical Boltzmann equation20 can be straightfor-
wardly adapted to the qLFP operator. Then we discuss two
approximations of the linearized qLFP operator that can be
useful in numerical implementations of the latter for modeling
dense plasmas near local equilibrium.

We focus on the linearization of the operator Caa for like-
particle collisions; the extension to unlike-particle collision
operator Cab is straightforward. For definiteness, but without
lack of generality, we consider the electron-electron collision
operator (setting da ¼ )1, ga¼ 2 in the Caa). For simplicity
of notation, we drop the subscript “e” in most expressions.

A. Generalities

We assume that at every space-time position ðr; tÞ, the
momentum distribution function can be decomposed as

f ¼ f0 þ df ;

where

f0 r; p; tð Þ ¼
2

2p"hð Þ3
1

e)b r;tð Þ l r;tð Þ) 1
2m p)mu r;tð Þð Þ2½ ' þ 1

is the local Fermi-Dirac distribution function and

df . f :

For convenience we define the momentum in the reference
frame

gðr; p; tÞ ¼ p) muðr; tÞ; g ¼ jgj;

and the function F0ðgÞ ¼ f0ðgþ muÞ.
Expanding the electron-electron qLFP collision operator

to first order in df , we obtain

Cee½f ; f ' ¼ Cee½f0; f0'|fflfflfflfflffl{zfflfflfflfflffl}
¼0

þ Ĉdf þ Oðdf 2Þ;

where

Ĉdf ¼ C1½f0; df ' þ C2½df ; f0'

is the linearized qLFP collision operator.

1. First term

C1 is a differential operator acting on df , more precisely
a linear Fokker-Planck operator

C1 f0; df½ ' ¼ ) @

@p
% C df ) 1

2

@

@p
% D

$
df

( )% &
; (18)

where the friction vector C and diffusion tensor D
$

are inde-
pendent of df and are given by

C ¼ ð1) 2hf0ÞAee½f0' þ Bee½f0'; (19)

D
$
¼ D

$

ee½f0' (20)

in terms of the friction vectors and diffusion tensor defined
in Eq. (9). Using the expressions (12) for the potentials in
local equilibrium into Eq. (9), we obtain the following
closed-form expression:

Cðr; p; tÞ ¼ cðr; g; tÞg;

D
$

r; p; tð Þ ¼ dk r; g; tð Þ
gg

g2
þ d? r; g; tð Þ I

$
) gg

g2

- .
;

where

cðgÞ ¼ aðgÞð1) 2hF0ðgÞÞ þ bðgÞ

and

a gð Þ ¼ )
4cee

g3

m

2p"h2b

- .3
2

Q1
2

bl; xð Þ; (21a)
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b gð Þ ¼ )
4cee

g3

m

2p"h2b

- .3
2

Q)1
2

bl; xð Þ þ 8pceem

bg2
F0 gð Þ;

dk gð Þ ¼ )
2m

b
a gð Þ; (21b)

d? gð Þ ¼
4cee

g

m

2p"h2b

- .3
2

Q)1
2

bl; xð Þ ) 1

2
dk gð Þ; (21c)

where x ¼ b
2m g2.

In the classical limit, C1 reduces to the collision
(Fokker-Planck) operator of a test-particle colliding with a
Maxwellian background.17 In contrast, the general expres-
sion (18) differs from that of a test-particle moving in the
equilibrium, Fermi-Dirac electronic background (as previ-
ously discussed in Sec. II E). Nevertheless, C1 can still be
regarded as a drag-diffusion operator in momentum space,
with drag coefficient c and diffusion coefficients dk and d?.

2. Second term

The second term

C2 df ; f0½ ' ¼ ) @

@p
% dC df½ 'f0 )

1

2

@

@p
% dD

$
df½ 'f0

h i/ 0
;

where

dC½df ' ¼ ð1) hf0ÞAee½df ' þ Bee½ð1) 2hf0Þdf ';

dD
$
½df ' ¼ D

$

ee½ð1) 2hf0Þdf ':

The term C2 consists of source and sink terms that enforce
the conservation laws of the full operator Ĉ . While simpler
than the non-linear operator Cee; C2 is nevertheless still com-
plicated to deal with analytically and numerically since it is
a non-local integral operator of the form

C2½df ; f0'ðpÞ ¼
ð

dp0Kðp; p0Þdf ðp0Þ: (22)

Below we discuss approximations of C2 that can be used to
facilitate its treatment in practical applications.

3. Alternative expression

For some applications, the following expression of the
linearized operator Ĉ can be useful

Ĉdf ¼ cee @

@p
%
ð

dp0 V
$

p; p0
* +

%
@/ pð Þ
@p

) @/ p0ð Þ
@p0

% &
:

where df ¼ f0ð1) hf0Þ/.

B. Properties

The linearized operator Ĉ has most of the same proper-
ties as the non-linear collision term Cee (see Sec. II C) and as
its classical counterpart.17 The properties listed here can be
important in analytical works and numerical applications.
Interestingly, several of them are satisfied separately by the
terms C1 and C2.

1. Collisional invariants

The quantities ð1; p; p2Þ are the collisional invariants of
Ĉ, i.e.,

ð
dp wĈdf ¼ 0 for w ¼ 1; px; py; pz; p

2:

2. Self-adjointness

This important property of the linearized collision oper-
ator is arguably more difficult to prove than in the classical
case. The details of the proof are given in Appendix E 1.

Let df ¼ f0ð1) hf0Þa, where a is a scalar function of
momentum p; we define

I0ðaÞ ¼ Ĉdf ¼ I1ðaÞ þ I2ðaÞ;

with

I1ðaÞ ¼ C1½f0; df '; I2ðaÞ ¼ C2½df ; f0':

Given two functions a and b of the momentum p, we define
the bracket integrals

½a; b'n ¼
ð

dp bInðaÞ with n ¼ 0; 1; 2:

The following properties are satisfied:

(a) the bracket integrals are bilinear, symmetric forms, i.e.,

½a; b'n ¼ ½b; a'n with n ¼ 0; 1; 2: (23)

(b) I0 is a semi-definite positive operator in the sense that,
for arbitrary a

½a; a'0 + 0:

The equality sign holds if and only if a is a linear com-
bination of the collisional invariants

aðpÞ ¼ c0 þ c1 % pþ c2p2; (24)

where c0, c1, and c2 are independent of p;
(c) consequently, the general solution of the homogeneous

integral equation I0ðaÞ ¼ 0 is given by Eq. (24), i.e.,

Ĉdf ¼ 0 () df ¼ ðc0 þ c1 % pþ c2p2Þf0ð1) hf0Þ:
(25)

Physically, Eq. (25) can be regarded as the general
expression for the modification of a local Fermi-Dirac
distribution function due to perturbations in the ther-
modynamic variables l, b, and u, Taylor expanded to
first order in these perturbation. Indeed, by substituting
lþ dl for l (and similarly for b and u) in Eq. (18),
and Taylor expanding with respect to the variations
dl; db and du, the first order term is

df ¼ bdlþ l)
p) muð Þ2

2m

- .
dbþ b p) muð Þ % du

% &

( f0 1) hf0ð Þ:

032706-12 J!erôme Daligault Phys. Plasmas 23, 032706 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  192.12.184.6 On: Tue, 22 Mar
2016 15:05:36



C. Approximations

As mentioned above, in applications, rather than use the
complicated integral operator C2, it may be more convenient
to employ a simpler approximate operator that shares as
many properties as possible with the exact operator. At the
least, to be physically acceptable, one should replace C2 by a
term that guarantees local particle number, momentum, and
energy conservation such that the particles, momentum, and
energy removed by the drag-diffusion term C1 is replenished
by the approximate C2.

In the following, we generalize two approximations of the
classical, linearized Fokker-Planck operator commonly used in
traditional plasma physics.42–45 We begin by extending to the
quantum case the approximation introduced by Catto and
Tsang and later by other authors,42,44,45 and then we consider
the refined formulation of Lin, Tang, and Lee.43 For conven-
ience, we remark that both approximations can be written as

C2½df ; f0' * f0ð1) hf0ÞO½df ';

with

O½df ' ¼ )K %
ð

dp0 ½p0 ) mu'C1½f0; df 0'

)E
ð

dp0 ½aðp0 ) muÞ2 þ b'C1½f0; df 0' (26a)

¼ )K %
ð

dp0 Cdf 0

)E
ð

dp0 a½2C % ðp0 ) muÞ þ TrD
$
'df 0; (26b)

where df 0 ¼ df ðr; p0; tÞ (note that in deriving the last equa-
tion (26b), b was assumed to be independent of p0).

Comparing Eqs. (26) with (22), one sees that the former
is significantly simpler to evaluate for different values of the
momentum p than the exact operator; in particular, the mo-
mentum integrals of df in O½df 'ðr; p; tÞ is the same for all
values of p and, in contrast to Eq. (22), need to be evaluated
only once at each space-time point ðr; tÞ.

1. First approximation

Although not explicitly mentioned in the original papers,
the approximation of Refs. 44 and 45 is obtained by expanding
the classical limit C2½df ; f0' over orthogonal trivariate polyno-
mials with respect to the local Maxwellian distribution func-
tion, e.g., the Hermite tensor polynomials introduced by
Grad,46 and then keeping only the terms that are strictly neces-
sary to ensure the conservation of particle number, momentum,
and energy, and setting all the other terms to zero. The general-
ization to the quantum case requires polynomials orthogonal
with respect to f0ð1) hf0Þ, which leads to Eq. (26) with

a ¼ b
m
; b ¼ )3

Q1
2

blð Þ
Q)1

2
blð Þ

:

One can easily verify47,48 that the polynomials HðgÞ ¼ 1,
gi (i¼ 1, 2, 3), and ag2 þ b are, indeed, orthogonal with respect
to f0ð1) hf0Þ. Enforcing the constraints of conservation of

particle number, momentum and energy, we obtain the follow-
ing expressions for K and E:

Kðr; p; tÞ ¼ aKðr; tÞg;

with

aK ¼
1

3

ð
dp g2f0 1) hf0ð Þ

% &)1

¼ nmkBT
Q1

2
blð Þ

Q)1
2

blð Þ

" #)1

and

E r; p; tð Þ ¼ aE r; tð Þ b
ðp) mu r; tð ÞÞ2

m
) 3
Q1

2
blð Þ

Q)1
2

blð Þ

 !
;

with

aE ¼
ð

dp
b
m

g2 ) 3
Q1

2
blð Þ

Q)1
2

blð Þ

 !2

f0 1) hf0ð Þ

2

4

3

5
)1

¼ 15n
Q3

2
blð Þ

Q)1
2

blð Þ
) 9n

Q1
2

blð Þ
Q)1

2
blð Þ

 !2
2

4

3

5
)1

:

In the classical limit bl! )1 obtained using Q"ðtÞ , 1
for t! )1, the previous expressions give

aK ¼
1

mnkBT
; aE ¼

1

6n
;

which correspond to the usual values used in the
literature.44,45

2. Second approximation

This approximation improves the first approximation in
that, like the exact operator, it annihilates functions df of the
form (25). The approximation corresponds to setting

a ¼ 1; b ¼ 0;

in Eq. (26) together with

Kðr; p; tÞ ¼ aKðr; tÞCðr; p; tÞ ¼ aKðr; tÞcðr; g; tÞg;

with

aK ¼
1

3

ð
dp cg2f0 1) hf0ð Þ

% &)1

¼ 4cee

3h2

2pm

b

- .5
2

Q)3
2

blð Þ )Q)1
2

blð Þ
( )

" #)1

(27)

and

Eðr; p; tÞ ¼ aEðr; tÞ½2Cðr; p; tÞ % gþ TrD
$
ðr; p; tÞ'

¼ aEðr; tÞ½2cðr; g; tÞg2 þ dkðr; g; tÞ þ 2d?ðr; g; tÞ';

with
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aE ¼
ð

dp 2cg4 þ dk þ 2d?
* +

g2
h i

f0 1) hf0ð Þ
% &)1

¼ 128 p5=2cee

h2

m

b

- .7
2

Q)1
2

blð Þ )Q1
2

blð Þ
( )

" #)1

:

In the classical limit (obtained using the series expansion
F "ðtÞ ¼ z) z2

2"þ1 þ oðz2Þ with z ¼ et), the previous expres-
sions give

aK ¼ ) 2n2cee

3

ffiffiffiffiffiffiffi
b

mp

r !)1

; aE ¼ )4n2cee

ffiffiffiffiffiffi
m

pb

r !)1

;

which correspond to those originally proposed by Lin
et al.21,43

This approximation satisfies many properties of the
exact operator previously discussed in Sec. III B.

3. Self-adjointness

Let df ¼ f0ð1) hf0Þa, and

I~2½a' - f0ð1) hf0ÞÔdf ; ½a; b'~2¼
ð

dp bI~2½a':

Then, by construction, as shown in Appendix E 2

½a; b'~2¼ ½b; a'~2 : (28)

As a consequence, the approximate linearized collision
operator

~Cdf ¼ C1ðf0; df Þ þ f0ð1) hf0ÞO½df '

is also self-adjoint.

4. Conservation laws

By construction, the quantities ð1; p; p2Þ are the collision
invariants of ~C, i.e.,

ð
dpðc0 þ c1 % pþ c2p2Þ~Cdf ¼ 0; 8df ; (29)

where c0, c1, and c2 are independent of p.

5. Stationary states

~C satisfies49

~Cdf ¼ 0 () df ¼ ðc0 þ c1 % pþ c2p2Þf0ð1) hf0Þ:

Like the exact linearized operator Ĉ (see Eq. (25), but
unlike the first approximation, the second approximation
annihilates the collisional steady states, i.e., the linearly
shifted Fermi-Dirac distribution functions. This is because
by taking into account the momentum dependence of the
momentum and energy exchange rates induced by colli-
sions, the second approximation maintains a linearly shifted
Fermi-Dirac distribution by restoring the momentum and
energy according to their loss rates. In contrast, in the first
approximation, an initially linearly shifted Fermi-Dirac dis-
tribution function is being distorted in momentum space
over time.

IV. CONCLUSION

We have extended many of the standard properties of
the classical Landau-Fokker-Plank collision operator widely
used in plasma physics to the quantum Landau collision op-
erator, which extends the former operator to include effects
of quantum statistics. First, we have discussed general
aspects of the qLFP operator, including properties in connec-
tion with the conservation laws, the H-theorem, and the
global and local equilibrium distributions; its Fokker-Planck
form in terms of three potentials that extend the usual two
Rosenbluth potentials; the establishment of useful closed-
form expressions for these potentials in terms of Fermi-Dirac
and Bose-Einstein integrals; the application of the latter to
the classic test-particle problem to illustrate the physics
embodied by the qLFP operator; the development of useful
closed-form expressions for the electron-ion momentum and
energy transfer rates. Then, we have discussed the basic
properties of the linearized qLFP operator, and extended two
classic approximations of its classical counterpart that can be
useful in numerical implementations. The algebraic manipu-
lations needed in establishing useful, closed-form expres-
sions are arguably less straightforward than in the classical
case. We have therefore given all the derivations in the
appendixes not only for completeness but also because the
“tricks” used could potentially be useful to other quantum ki-
netic theory calculations.
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APPENDIX A: A DERIVATION OF THE QUANTUM
LANDAU COLLISION OPERATOR

We present a physicist’s derivation of the qLFP colli-
sion operator. For simplicity of notation, we consider an
electron plasma in a uniform positive charge background;
in this appendix, m is the electron mass, uðkÞ ¼ 4pe2=k2 is
Fourier transform of the bare Coulomb potential energy
e2=r of two electrons at a distance r apart. We start
from the quantum Boltzmann (qB) collision integral for
the rate of change of the number of electrons in momen-
tum state p

CqB f ; f½ ' pð Þ ¼
ð

dp0
ð

dq

2p"hð Þ3
v q="hð Þ

! q="h;
q % p
"hm
þ q2

2m

- .

''''''''

''''''''

2

( 2pm

"h
d q % p) p0 þ q

* +* +

( fpþqfp0)q 1) hfp
* +

1) hfp0
* +#

) fpfp0 1) hfpþq
* +

1) hfp0)q
* +

' ; (A1)
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where the transition probability per unit time for Coulomb scattering of two electrons from momentum state p; p0 to momen-
tum states pþ q; p) q accounts for the screening effect via the dielectric function !ðk;xÞ.29

The qLFP collision integral is obtained by retaining in CqB only the small angle scattering events. This is done by expand-
ing the integrand in powers of the momentum transfer q and keeping only the leading term. While the calculation does not
present any major difficulty, the bookkeeping of terms of the same order requires some attention in order to reduce to the com-
pact form Eq. (3). Below we outline the main steps.

We combine the expansion to first-order in q of both the delta function

d q % p) p0 þ q
* +* +

* d q % p) p0
* +* +

þ q % @
@p

d q % p) p0
* +* +

and the dielectric function

v q="hð Þ

! q="h;
q % p
"hm
þ q2

2m

- .

''''''''

''''''''

2

* v q="hð Þ

! q="h;
q % p
"hm

- .

''''''''

''''''''

2

þ q

2
% @
@p

v q="hð Þ

! q="h;
q % p
"hm

- .

''''''''

''''''''

2

;

with the Taylor expansion to second order in q of the term in brackets in Eq. (A1)

:::½ ' * q %
@fp
@p

fp0 1) hfp0
* +

) q %
@fp0

@p0
1) hfp
* +

fp

% &
þ 1

2
q % Dfp % qfp0 1) hfp0

* +
þ 1

2
q % Dfp0 % qfp 1) hfp

* +
%

) q % @fp
@p

- .
q % @fp0

@p0

- .
1) hfp
* +

1) hfp0
* +&

: (A2)

The term of first order vanishes upon integration over q and the terms of second order is

v q="hð Þ

! q="h;
q % p
"hm
þ q2

2m

- .

''''''''

''''''''

2

d q % p) p0 þ q
* +* +

fpþqfp0)q 1) hfp
* +

1) hfp0
* +

) fpfp0 1) hfpþq
* +

1) hfp0)q
* +# $

* 1

2

v q="hð Þ

! q="h;
q % p
"hm

- .

''''''''

''''''''

2

@

@p
) @

@p0

- .
% q d q % p) p0

* +* +
q %

@fp
@p

fp0 1) hfp0
* +

)
@fp0

@p0
fp 1) hfp
* +% &/ 0

þ q

2
% @
@p

v q="hð Þ

! q="h;
q % p
"hm

- .

''''''''

''''''''

2

( d q % p) p0
* +* +

q %
@fp
@p

fp0 1) hfp0
* +

) q %
@fp0

@p0
1) hfp
* +

fp

% &
:

Hence, to lowest order in q, we find

CqB f ; f½ ' pð Þ * mp
@

@p
%
ð

dp0
ð

dk

2pð Þ3
v kð Þ

! k;
k % p

m

- .

''''''''

''''''''

2

( d k % p) p0
* +* +

kk %
@fp

@p
fp0 1) hfp0
* +

)
@fp0

@p0
fp 1) hfp
* +% &

: (A3)

Equation (A3) can be regarded as the quantum extension of the classical Lenard-Balescu collision integral (in the literature,
Eq. (A1) is often abusively referred to as the quantum Lenard-Balescu equation15). Like in the classical case, the qLFP equa-
tion is obtained in the static limit !ðk; k%p

m Þ! !ðk; 0Þ, leading to

CqLFP f ; f½ ' pð Þ ¼
m

8p2

@

@p
%
ð

dp0 G
$

p) p0
* +

%
@fp
@p

fp0 1) hfp0
* +

)
@fp0

@p0
fp 1) hfp
* +% &

where

G
$

gð Þ ¼
ð

dk
v kð Þ
! k; 0ð Þ

''''

''''
2

d k % gð Þkk ¼ p 4pq2
* +2

lnK
g2 I
$
) gg

g3
;
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with g ¼ p) p0, and

lnK ¼
ð1

0

dk

k

'''
1

! k; 0ð Þ

'''
2

(A4)

is the Coulomb logarithm.

APPENDIX B: IMPORTANT PROPERTIES OF THE
FERMI-DIRAC FUNCTION

The quantum equilibrium distribution function

fq p; b; lð Þ ¼ 1

h
1

e)b l)p2

2m

* +
) d

satisfies

1

b
@

@l
fq ¼ fq 1þ dhfqð Þ

1

b2

@2

@l2
fq ¼ fq 1þ dhfqð Þ 1þ 2dhfqð Þ

@

@p
fq ¼ )

b
m

pfq 1þ dhfqð Þ:

(B1)

We emphasize these properties because the fact that products
of the form fqð1þ dhfqÞ and fqð1þ dhfqÞð1þ 2dhfqÞ can be
simply expressed in term of derivatives of f is essential in
deriving the most of the results of the main text. This prop-
erty of the equilibrium quantum distribution function is quite
fortunate. In the classical case, the equivalent properties sat-
isfied by the Maxwell-Boltzmann distribution (more pre-
cisely of the underlying exponential function) are even
simpler and are often unnoticed, but they are similarly essen-
tial to our ability to write closed-form formulas.

In addition, the majority of the closed-form results were
obtained by noticing the following relation between the
quantum distribution function and the Maxwell-Boltzmann
distribution function

fq p; b; lð Þ ¼ 2pmð Þ3=2

n

1

h

ð1

)1
dE

1

e)b l)Eð Þ ) d

(
ði1

)i1

dz

2pi

ezE

z3=2
fcl p; zð Þ ; (B2)

where

fcl p; bð Þ ¼ n
b

2pm

- .3=2

e)
b

2mp2

:

Equation (B2) simply follows from 1
1þea)x2 ¼

Ðþ1
)1

1
ea)y)d

dðy) x2Þ and dðy) x2Þ ¼
Ð1
)1

dt
2p eitðy)x2Þ ¼

Ð i1
)i1

dz
2pi ezye)zx2

¼
Ð i1
)i1

dz
2pi

ezy

z3=2 z3=2e)zx2
. The relation (B2) provides a link

between the classical results and the quantum results.
Indeed, the classical expression for the Rosenbluth potentials
and related quantities is momentum integrals of the form

IclðbÞ ¼
ð

dv QðvÞ~fclðv; bÞ;

while their quantum counterparts (10) are of the form

Iqðb; lÞ ¼
ð

dv QðvÞ~fqðv; b; lÞ;

and

Jq b; lð Þ ¼
ð

dv Q vð Þ~fq v; bð Þ 1þ d~h~fq v; b; lð Þ
( )

¼ 1

b
@

@l
Iq b; lð Þ ; (B3)

where we used Eq. (B1) in the last expression. Knowing
IclðbÞ, Iq, and Jq can be obtained using

Iq b; lð Þ ¼ 2pmð Þ3=2

n

1

h

ð1

)1
dE

1

e)b l)Eð Þ ) d

(
ði1

)i1

dz

2pi

ezE

z3=2
Icl zð Þ ; (B4)

which results from the relation (B2). This way the quantum
calculation amounts first to an integral in the complex
planes, which, for the cases of interest here, can be done
using Cauchy’s residues theorem. The remaining integral
over E yields to Fermi integrals.

APPENDIX C: CALCULATION OF POTENTIALS H, I,
AND G IN LOCAL THERMAL EQUILIBRIUM

All closed-form expressions for the potentials H, I, and G
are obtained by applying the method outlined in Appendix B.

1. Potential H

We have

H vð Þ ¼
ð

dv0
1

jjv) v0jj
fq v0; bð Þ

¼ 2pmð Þ3=2

n

1

h

ð1

)1
dE

1

e)b l)Eð Þ ) d

(
ði1

)i1

dz

2pi

ezE

z3=2
Hcl v; zð Þ ;

where

Hcl v; bð Þ ¼
ð

dv0
1

jjv) v0jj
~fcl v0; bð Þ ¼ n

v
erf

ffiffiffiffiffiffiffi
mb
2

r
v

 !

is the classical Rosenbluth potential. The complex integral is
performed as follows:

ði1

)i1

dz

2pi

ezE

z3=2
Hcl v; zð Þ ¼

ffiffiffiffiffiffi
2m
p

nffiffiffi
p
p

v

ði1

)i1

dz

2pi

ezE

z

ðv

0

e)
mz
2 x2

dx

¼
ffiffiffiffiffiffi
2m
p

nffiffiffi
p
p

v

ðv

0

dx

ði1

)i1

dz

2pi

ez E)mx2=2ð Þ

z

¼
ffiffiffiffiffiffi
2m
p

nffiffiffi
p
p

v

ðv

0

dx H E) mx2=2
* +

;
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where we used
ðaþi1

a)i1

dz

2pi

ezx

z
¼ H xð Þ: (C1)

Therefore,

H vð Þ ¼
4pm

v
1

h

ðv

0

dx

ð1

mx2=2

dE
1

e)b l)Eð Þ ) d

¼ 4pm2

bh
Qc

0 bl;
mbv2

2

- .

þ 1

vh
2pm

b

- .3=2

Q1=2 bl;
mbv2

2

- .
; (C2)

after an integration by parts.

2. Potential I

The potential I is obtained by applying Eq. (B3) to (C2),
i.e.,

I vð Þ ¼
ð

dv0
1

jjv) v0jj
~fq v0;bð Þ 1þ d~h~fq v0;bð Þ

( )
¼ 1

b
@

@l
H vð Þ:

3. Potential G

We again apply Eqs. (B3) and (B4), i.e.,

G vð Þ ¼
ð

dvjv) v0j~fq v0ð Þ 1þ d~h~fq vð Þ
h i

¼ 1

b
@

@l
g vð Þ;

where

gðvÞ ¼
ð

dv0jjv) v0jj~fqðv0; bÞ (C3)

¼ 2pmð Þ3=2

n

1

h

ð1

)1
dE

1

e)b l)Eð Þ ) d

(
ði1

)i1

dz

2pi

ezE

z3=2
gcl v; zð Þ ; (C4)

and gcl is the classical Rosenbluth potential

gcl v; bð Þ ¼
ð

dv0jjv) v0jj ~fcl v0; bð Þ

¼ n vþ 1

mbv

- .
erf

ffiffiffiffiffiffiffi
mb
2

r
v

 !

þ

ffiffiffiffiffiffiffiffiffi
2

pmb

s

e)
mb
2 v2

2

4

3

5:

The complex integral is
ði1

)i1

dz

2pi

ezE

z3=2
gcl v; zð Þ

¼ n

ði1

)i1

dz

2pi

ezE

z3=2
( vþ 1

mvz

- . ffiffiffiffiffiffiffiffi
2mz

p

r ðv

0

e)
mb
2 x2

dx

"

þ
ffiffiffiffiffiffiffiffi

2

pmz

r
e)

mz
2 v2

#

¼
ffiffiffiffiffiffi
2m

p

r
nv
ði1

)i1

dz

2pi

ezE

z

ðv

0

e)
mb
2 x2

dxþ
ffiffiffiffiffiffiffi
2

mp

r
n

v

ði1

)i1

dz

2pi

ezE

z2

ðv

0

e)
mb
2 x2

dxþ
ffiffiffiffiffiffiffi
2

pm

r
n

ði1

)i1

dz

2pi

ezE

z2
e)zmv2

2 :

Using
Ð aþi1
a)i1

dz
2pi

ezx

z2 ¼ )xHðxÞ and Eq. (C1), we then find

g vð Þ ¼ v2H vð Þ þ
4p
v

1

h

ðv

0

dx

ð1

0

E

1þ e)b l)mx2

2 )Eð Þ

þ4pm
1

h

ð1

0

E

1þ e)b l)mp2

2 )E
* + :

Using
Ð1

0 dE 1

1þe)bðl)mx2
2
)EÞ
¼ ln 1þ ebðl)mx2

2 Þ
( )

and Eq. (B1),
we find

G vð Þ ¼ v2I vð Þ þ
1

b
2pm

b

- .3=2 1

v
Q1=2 bl;

mb
2

v2

- .

þ 8pm

b2

1

h
ln 1þ eb l)mv2

2

* +( )
;

where we used an integration by parts.

APPENDIX D: FORMULAS FOR Rei AND Qei

1. Friction force Rei

We again apply the method outlined in Appendix B to

Fei ¼
ð

dppCei fq½ ' pð Þ

¼
ð

dpAei pð Þfq pð Þ 1þ mi

me

- .
) hefq pð Þ

% &

¼ mi

me
fei þ

1

be

@

@le
fei; (D1)

where

fei -
ð

dpAei pð Þfq pð Þ

¼ 2pmeð Þ3=2

ne

1

he

ð1

)1
dE

1

1þ e)be le)Eð Þ

(
ði1

)i1

dz

2pi

ezE

z3=2
fcl

ei zð Þ (D2)

and

fcl
ei -

ð
dpAeiðpÞfclðpÞ:

In the following, we first determine fcl
ei and substitute the

result into Eqs. (D2) and (D1).

a. Evaluation of fcl
ei

We will first show that

fcl
ei ¼

ceineni

milei

@

@u

1

u
erf

u

v2
i þ v2

e

* +1=2

 !" #
(D3)

*) cei

milei

4nine

3
ffiffiffi
p
p 1

v2
e þ v2

i

* +3=2
ue ) uið Þ (D4)

if jjui ) uejj=vi . 1;
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where u ¼ ue ) ue. In the literature, one generally finds the
approximate expression (D4) for fcl

ei. For our purpose, we use
the exact expression (D3) since Eq. (D2) requires an integral
of fcl

eiðzÞ over the entire range of inverse temperature z, and
the approximation (D4) is not valid across the entire range.

Proof. Using Aei and Hei¼ ni
jjv)uijjerf ð

ffiffiffiffiffiffiffi
bimi

2

q
jjv)ueÞjjÞ,

after change of variables and defining u¼ ue)ue

fcl
ei ¼

mebe

2p

- .3=2
ceineni

milei

@

@u

ð
dv

erf v=við Þ
v

e) v)uð Þ2=v2
e

¼ mebe

2p

- .3=2
ceineni

milei

( @

@u

pv2
e

u

ð1

)1
dverf v=við Þe) v)vð Þ2=v2

e

" #

¼ mebe

2p

- .3=2
ceineni

milei

@

@u

p3=2v3
e

u
erf

1

v2
e þ v2

i

* +1=2
u

 !2

4

3

5:

!

b. Evaluation of fei

Using Eq. (D3) into Eq. (D2), we find

fei ¼
2pmeð Þ3=2

ne

ceineni

milei

ffiffiffiffiffiffi
me

2

r
1

he

ð1

)1
dE

1

1þ e)be le)Eð Þ

( @

@u

1

u

ði1

)i1

dz

2pi

e
2E
m z

z3=2
erf

z

1þ zv2
i

- .1=2

u

 !" #
:

This integral can be simplified in the limit jjui ) uejj=
vi . 1. Indeed, for all z, z

1þzv2
i

( )1=2
u 0 jjui ) uejj=vi. When

jjui ) uejj=vi . 1,

fei ¼
2pmeð Þ3=2

ne

ceineni

milei

ffiffiffiffiffiffi
me

2

r
1

he

ð1

)1
dE

1

1þ e)be le)Eð Þ

( ) 4

3
ffiffiffi
p
p u

ði1

)i1

dz

2pi

e
2E
m z

1þ v2
i z

* +3=2
:

The complex integral is calculated in Appendix G 1, which
yields

fei ¼ )
1

ne

ceineni

milei

ffiffiffiffiffiffi
me

2

r
8

3p
pmemibi

2

- .3=2

(
ffiffiffiffiffiffi
me

2

r
me

mibi

- .3=2 u

he

ð1

0

dx

ffiffiffi
x
p

e)x

1þ e)bele e
mebe
mibi

x
:

c. Evaluation of Fei

Fei results form applying Eq. (D1) to fei above.

2. Collisional energy exchange rate Qei

Following the method outlined in Appendix B, we
write

Qei ¼
ð

dp
p2

2me
Cei pð Þ ) uei % Fei

¼
ð

dp
p

me
% Aei pð Þfq pð Þ 1þ mi

me

- .
) hefq pð Þ

% &/

þ 1

2me
TrD

$

ei pð Þfq pð Þ
0
) uei % Fei

- mi

me
q1 þ

1

be

@

@le
q1 þ q2 ) uei % Fei;

where

q1 ¼
1

me

ð
dp p % Aei pð Þfq pð Þ

¼ 2pmeð Þ3=2

ne

1

he

ð1

)1
dE

1

1þ e)be le)Eð Þ

(
ði1

)i1

dz

2pi

ezE

z3=2
qcl

1 zð Þ

q2 ¼
1

2me

ð
dp TrD

$

ei pð Þfq pð Þ

¼ 2pmeð Þ3=2

ne

1

he

ð1

)1
dE

1

1þ e)be le)Eð Þ

(
ði1

)i1

dz

2pi

ezE

z3=2
qcl

2 zð Þ

and

qcl
1 beð Þ ¼

1

me

ð
dp p % Aei pð ÞfB pð Þ

qcl
2 beð Þ ¼

1

2me

ð
dpTrD

$

ei pð ÞfB pð Þ:

a. Evaluation of qcl
1 and qcl

2

Following calculations similar to those previously out-
lines for the calculation of rcl

ei, we find

qcl
1 beð Þ ¼ ui % rcl

ei þ
nenicei

milei
( )

erf
u

v2
e þ v2

i

* +1=2

 !

u

2

64

þ 2ffiffiffi
p
p 1

v2
e þ v2

i

* +1=2

1

1þ v2
i =v2

e

e
) u2

v2
eþv2

i

3

75

qcl
2 beð Þ ¼

nenicei

melei

erf
u

v2
e þ v2

i

* +1=2

 !

u
:

In the limit jjui ) uejj=vi . 1

qcl
1 beð Þ ¼ )

2ffiffiffi
p
p

ffiffiffiffiffiffi
me

2

r
ceineni

milei

b1=2
e

1þ mebe

mibi

- .3=2
;

qcl
2 beð Þ ¼

2mi

me
ffiffiffi
p
p

ffiffiffiffiffiffi
me

2

r
ceineni

milei

b1=2
e

1þ mebe

mibi

- .1=2
:
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b. Evaluation of q1 and q2

q1 ¼ )
2pmeð Þ3=2

ne

ffiffiffiffiffiffi
me

2

r
2ffiffiffi
p
p ceineni

milei

1

he

(
ð1

)1
dE

1

1þ e)be le)Eð Þ

ði1

)i1

dz

2pi

e
2E
me

z

z 1þ v2
i z

* +3=2
;

q2 ¼
2pmeð Þ3=2

ne

ffiffiffiffiffiffi
me

2

r
2ffiffiffi
p
p ceineni

milei

mi

me

1

he

(
ð1

)1
dE

1

1þ e)be le)Eð Þ

ði1

)i1

dz

2pi

e
2E
me

z

z 1þ v2
i z

* +1=2
:

The complex integrals are calculated in Appendix G 2.

c. Evaluation of Qei

In the limit jjui ) uejj=vi . 1

Qei ¼ 16
ffiffiffi
p
p cei

lei
ni

m2
e

mi
kBTe ) kBTið Þ

( 1

he

ð1

0

dx
x2e)x2

1þ e)bele e
mebe
mibi

x2
:

In the additional limit me=mi . 1

Qei ¼ 4p
ceinime

mi

1

he

1

1þ e)bele
kBTe ) kBTið Þ:

APPENDIX E: SELF-ADJOINTNESS

We use the notations introduced in Sec. III

1. C1; C2

The proof is straightforward once we observe the fol-
lowing relations between the friction and diffusion terms

Cf0 1þ dhf0ð Þa ¼ 1

b
@

@l
Aee f0½ 'f0 1þ dhf0ð Þa
2 3

(E1a)

and

@

@p
% D
$

f0½ ' ¼ 2Bee f0½ ' ¼
2

b
@

@l
Aee f0½ '; (E1b)

D
$

f0½ ' % p ¼ )
2m

b
Aee f0½ '; (E1c)

2

b
@

@l
Aee af0½ ' ¼

@

@p
% D
$

af0 1þ dhf0ð Þ½ '; (E1d)

1

b2

@2

@l2
Aee af0½ ' ¼ Aee af0 1þ dhf0ð Þ 1þ 2dhf0ð Þ½ '; (E1e)

1

b2

@2

@l2
D
$

af0½ ' ¼ D
$

af0 1þ dhf0ð Þ 1þ 2dhf0ð Þ½ '; (E1f)

which are direct consequences of the basic properties (B1)
satisfied by the quantum distribution function f0.

The relations (E1a)–(E1c) imply

C1 f0;af0 1þ dhf0ð Þ½ ' ¼ 1

2

@

@p
% D

$
f0½ ' %

@a

@p
f0 1þ dhf0ð Þ

% &
; (E2)

while (E1d)–(E1f) yield

C2½af0ð1þ dhf0Þ; f0'

¼ cee @

@p
%

ð
dp0V

$
p;p0
* +

% @a0

@p0
f 00 1þ dhf 00
* +% &

f0 1þ dhf0ð Þ
/ 0

:

(E3)

By integration by parts, Equations (E2) and (E3) give the
desired relations

b; a½ '1 ¼ )cee

ð ð
dpdp0V

$
p; p0
* +

:
@b

@p

@a

@p

% &

( f 00 1þ dhf 00
* +

f0 1þ dhf0ð Þ
¼ a; b½ '1

and

b; a½ '2 ¼ )cee

ð ð
dpdp0V

$
p; p0
* +

:
@b

@p

@a0

@p0

% &

( f 00ð1þ dhf 00Þf0ð1þ dhf0Þ
¼ ½a; b'2;

where a and b are any phase-space functions.

2. f0ð12hf0ÞO½df '

Defining

P½df ' ¼ )
ð

dp cgdf ;

B½df ' ¼ )
ð

dp ½2cg2 þ dk þ 2d?'df ;

the approximation defined in Sec. III C 2 becomes

O½df ' ¼ K % P½df ' þ EB½df ':

Then,

½a; b'~2¼
ð

dp f0ð1) hf0ÞbK % P½f0ð1) hf0Þa'

þ
ð

dp f0ð1) hf0ÞbEB½f0ð1) hf0Þa'

¼ aKP½f0ð1) hf0Þa' %
ð

dp f0ð1) hf0Þbcg

þaEB½f0ð1) hf0Þa'

(
ð

dp f0ð1) hf0Þb½2cg2 þ dk þ 2d?'

¼ )aKP½f0ð1) hf0Þa' % P½f0ð1) hf0Þb'
) aEB½f0ð1) hf0Þa'B½f0ð1) hf0Þb'
¼ ½b; a'~2 :
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APPENDIX F: FORMULAS FOR aK AND aE

We use the notations introduced in Sec. III.

1. aK 5 1
3

R
dp cg2f0ð12hf0Þ

h i21

From Eqs. (B1) and (E1a), with F0ðgÞ ¼ f0ðgþ muÞ

F0 1) hF0ð Þ ¼ ) m

bg

@

@g
F0 gð Þ; (F1)

cf0 1) hf0ð Þ ¼ 1

b
@

@l
a gð ÞF0 gð Þ 1) hF0 gð Þ

* +# $
;

and

a gð Þ ¼ )
4cee

g3

m

2p"h2b

- .3
2

Q1
2

bl;
b

2m
g2

- .

1

aK
¼16pceem

3b2

m

2p"h2b

- .3
2

( @

@l

ð1

0

dgQ1
2

bl;
b

2m
g2

- .
@F0

@g

" #

¼ ) 2pð Þ3=2 16pceem

3b2

ð1

0

dgg2F0 gð Þ2

after an integration by parts. The last integral is calculated

using Eq. (F1) in the form g2F2
0 ¼ 1

h g2F0 þ mg
b
@F0

@g

h i
and an

integration by parts, which directly leads to the expression
(27) of the main text.

2. aE5½
R

dp½2cg41ðdk12d?Þg2'f0ð12hf0Þ'21

Using the expression (21) for a, b, dk, and d?, the inte-
grand becomes

1

aE
¼ 4p

ð1

0

dg 2 1)2hF0ð Þag6þ16pcee m

b
g2F0

% &
F0 1)hF0ð Þ:

The first part of the integral (which includes a) can be reex-
pressed with an integration by parts using Eq. (B1), i.e.,
@F0ð1)hF0Þ

@g ¼ ) b
m gF0ð1) hF0Þ. The resulting integrant

involves the term @
@g g5aðgÞ, which can evaluated using Eq.

(21). This results in the following expression:

1

aE
¼ )128p2cee m

b

- .2 ð1

0

dgg2F0 gð Þ2;

where the last integral was explained in Appendix F 1.

APPENDIX G: EVALUATION OF COMPLEX
INTEGRALS

1.
R a1i‘
a2i‘

dz
2pi

etz

ða1zÞ3=2

We show that

ðaþi1

a)i1

dz

2pi

etz

aþ zð Þ3=2
¼ 2

ffiffi
t
p
ffiffiffi
p
p e)atH tð Þ; (G1)

where a + 0, a> 0, and t 2 R are real constant.

Proof. The integral can be obtained from the relation

ðaþi1

a)i1

dz

2pi

etz

aþ zð Þ3=2
¼ )2

@

@a

ðaþi1

a)i1

dz

2pi

etz

aþ zð Þ1=2
;

where, as we will show below, the second integral is
ðaþi1

a)i1

dz

2pi

etz

aþ zð Þ1=2
¼ 1ffiffiffiffiffi

pt
p e)atH tð Þ;

where h is the Heaviside step function.
The last integral can be evaluated as follows.
(1) Let us assume t + 0. The integrand has a branch

point at z¼ a and we choose the real segment ' )1; a' as
the branch cut. Let us consider

ð

C

dz

2pi

etz

aþ zð Þ1=2
;

where C is the contour shown in Fig. 6. On the figure, the
sections BC and DE actually lie on the real axis but are
shown separated for visual purposes. FG is a circle of radius
! and centered at ða; 0Þ. The sections AB and EF are arcs of
a circle of radius R and centered at the origin. Finally, the
thick line to left of x¼ a on the real axis represents the cho-
sen branch line. Since the integrand is analytic inside and on
C, we have by Cauchy’s theorem

ð

C

dz

2pi

etz

aþ zð Þ1=2
¼ 0;

or, more explicitly in terms of the line integrals along the
sections of contour starting from point F

ðaþiR

a)iR

eizt

aþ zð Þ1=2
dzþ

ðp

/

eReiht

aþ Reihð Þ1=2
iReihdh

þ
ð!

R)a
) e) uþað Þt

i
ffiffiffi
u
p duþ

ð)p

p

e !eih)að Þt

!eihð Þ1=2
i!eihdh

þ
ðR)a

!
) e) uþað Þt

)i
ffiffiffi
u
p duþ

ð2p)/

p

eReiht

aþ Reihð Þ1=2
iReihdh ¼ 0:

FIG. 6. Contour C ¼ ABCDEFA used to evaluate integrals G1 and G2.
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In the limit R!1 and !! 0, the second, fourth, and sixth
contributions (corresponding to integrals along the arcs of
circle AB and EF, and along the circle CD) vanish, and we
have

ðaþi1

a)i1

dz

2pi

eizt

aþ zð Þ1=2
¼ lim

R!1;!!0

1

p

ðR)a

!

e) uþað Þt

u1=2
du

¼ 2e)at

p

ð1

0

e)v2tdv u ¼ v2ð Þ

¼ e)at

ffiffiffiffiffi
pt
p :

(2) Let us assume t< 0. Let us consider

ð

C0

dz

2pi

etz

aþ zð Þ1=2
;

where C0 is the contour shown in Fig. 7. Since the integrand
is analytic inside and on C0, this integral vanishes by
Cauchy’s theorem. Moreover, in the limit R!1, the inte-
gral along the arc of circle FGA vanishes, and therefore

ðaþi1

a)i1

dz

2pi

eizt

aþ zð Þ1=2
¼ 0:

2.
R a1i‘
a2i‘

dz
2pi

etz

zða1zÞ3=2

We show that

ðaþi1

a)i1

dz

2pi

etz

z aþ zð Þ3=2
¼ erf

ffiffiffiffi
at
p* +

a3=2
) 2ffiffiffi

p
p

ffiffi
t
p

a
e)at

" #

H tð Þ;

(G2)

where a + 0, a> 0 and t 2 R are real constant.
Proof. The integral is obtained from the relation

ði1

)i1

dz

2pi

etz

z aþ zð Þ3=2
¼ )2

@

@a

ði1

)i1

dz

2pi

etz

z aþ zð Þ1=2
;

where, as we show below, the second integral is

ði1

)i1

dz

2pi

etz

z aþ zð Þ1=2
¼ erf

ffiffiffiffi
at
p* +
ffiffiffi
a
p H tð Þ:

The last integral can be evaluated as follows.
(1) Let us assume t + 0. As before in Appendix G 1, the

integrand has a branch point at z¼ a and we choose the real
segment ' )1; a' as the branch cut. In addition, it has a sin-
gle pole at the origin. Let us consider

ð

C

dz

2pi

etz

aþ zð Þ1=2
;

where C is again the contour shown in Fig. 6. By the residue
theorem, this contour integral is equal to the residue at the
pole z¼ 0

ð

C

dz

2pi

etz

z aþ zð Þ1=2
¼ Res

etz

z aþ zð Þ1=2

 !

z¼0

¼ 1ffiffiffi
a
p :

As in Appendix G 1, in the limit R!1 and !! 0, the con-
tributions to the contour integral along the arcs of circle AB
and EF and along the circle CD vanish. Hence, we are left
with

ðaþi1

a)i1

dz

2pi

etz

z aþ zð Þ1=2

¼ 1ffiffiffi
a
p þ lim

R!1;!!0

1

p

ðR)a

!

e) uþað Þt

u) að Þu1=2
du

¼ erf
ffiffiffiffi
at
p* +
ffiffiffi
a
p :

In evaluating the last integral, we used

ð1

0

du
e) uþað Þt

uþ að Þ
ffiffiffi
u
p ¼

ð1

t
dt0
ð1

0

du
e) uþað Þt

ffiffiffi
u
p

¼
ð1

t
dt0

ffiffiffi
p
p

e)at0

ffiffiffi
t0
p ¼ pffiffiffi

a
p erfc

ffiffiffiffi
at
p* +

:

(2) Let us assume t< 0. As before, the integral

ð

C0

dz

2pi

etz

z aþ zð Þ1=2

on the contour C0 shown in Fig. 7 vanishes since the inte-
grand in analytic inside and on the contour. It implies

ðaþi1

a)i1

dz

2pi

eizt

z aþ zð Þ1=2
¼ 0:
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